Guaranteed Nonconvex Optimization Submodular Maximization Over Continuous Domains
Abstract
Maximizing non-monotone submodular functions is one of the most important problems in submodular optimization. A breakthrough work on the problem is the double-greedy technique introduced by Buchbinder et al. [7]. Prior work has shown that this technique is very effective. This paper surveys on double-greedy algorithms for maximizing non-monotone submodular functions from discrete domains of sets and integer lattices to continuous domains.
Keywords
- Submodular
- Non-monotone
- Algorithm
- Double greedy
This research was supported in part by the National Natural Science Foundation of China under grant numbers 11201439 and 11871442, and was also supported in part by the Natural Science Foundation of Shandong Province under grant number ZR2019MA052 and the Fundamental Research Funds for the Central Universities.
References
-
Ahmed, S., Atamtürk, A.: Maximizing a class of submodular utility functions. Math. Program. 128(1–2), 149–169 (2011)
-
Bach, F.: Submodular functions: from discrete to continuous domains. Math. Program. 175(1–2), 419–459 (2019)
-
Balcan, M.-F., Harvey, N.-J.-A.: Learning submodular functions. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, pp. 793–802. ACM. San Jose, CA, USA (2011)
-
Bian, A., Mirzasoleiman, B., Buhmann, J., Krause, A.: Guaranteed nonconvex optimization: submodular maximization over continuous domains. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, pp. 111–120. JMLR. Fort Lauderdale, Florida, USA (2017)
-
Buchbinder, N., Feldman, M.: Deterministic algorithms for submodular maximization problems. ACM Trans. Algorithms 14(3), 1–20 (2018). Article 32
-
Buchbinder, N., Feldman, M., Naor, J.-S., Schwartz, R.: Submodular maximization with cardinality constraints. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, Oregon, Portland, pp. 1433–1452 (2014)
-
Buchbinder, N., Feldman, M., Seffi, J., Schwartz, R.: A tight linear time (1/2)-approximation for unconstrained submodular maximization. SIAM J. Comput. 44(5), 1384–1402 (2015)
-
Chen, L., Feldman, M., Karbasi, A.: Unconstrained submodular maximization with constant adaptive complexity. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC, Phoenix, AZ, USA, pp. 102–113 (2019)
-
Ene, A., Nguy\(\tilde{\hat{\text{e}}}\)n, H.-L.: Constrained submodular maximization: beyond \(1/e\). In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS, New Brunswick, NJ, USA, pp. 248–258 (2016)
-
Ene, A., Nguy\(\tilde{\hat{\text{ e }}}\)n, H.-L., Vladu, A.: A parallel double greedy algorithm for submodular maximization (2018). https://arxiv.org/abs/1812.01591
-
Feige, U., Mirrokni, V.-S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)
-
Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS, pp. 570–579. Palm Springs, CA, USA (2011)
-
Gharan, S.-O., Vondrák J.: Submodular maximization by simulated annealing. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1098–1117. Society for Industrial and Applied Mathematics, San Francisco, California, USA (2011)
-
Gottschalk, C., Peis, B.: Submodular function maximization on the bounded integer lattice. In: Sanità, L., Skutella, M. (eds.) WAOA 2015. LNCS, vol. 9499, pp. 133–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28684-6_12
-
Hartline, J., Mirrokni, V., Sundararajan, M.: Optimal marketing strategies over social networks. In: Proceedings of the 17th International Conference on World Wide Web, pp. 189–198. ACM. Beijing, China (2008)
-
Hochbaum, D.S.: An efficient algorithm for image segmentation. Markov random fields and related problems. J. ACM 48(4), 686–701 (2001)
-
Hochbaum, D.S., Hong, S.P.: About strongly polynomial time algorithms for quadratic optimization over submodular constraints. Math. Program. 69(1), 269–309 (1995)
-
Kapralov, M., Post, I., Vondrák, J.: Online submodular welfare maximization: greedy is optimal. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1216–1225. SIAM, New Orleans, Louisiana, USA (2013)
-
Niazadeh, R., Roughgarden, T.: Optimal algorithms for continuous non-monotone submodular and DR-submodular maximization. In: the 32nd Conference on Neural Information Processing Systems, NIPS, Montréal, Canada, pp. 9617–9627 (2018)
-
Soma, T., Yoshida, Y.: A generalization of submodular cover via the diminishing return property on the integer lattice. In: Advances in Neural Information Processing Systems, pp. 847–855 (2015)
-
Soma, T., Yoshida, Y.: Non-monotone DR-submodular function maximization. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, pp. 898–904. AAAI, San Francisco, California, USA (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Nong, Q., Gong, S., Fang, Q., Du, D. (2020). A Survey on Double Greedy Algorithms for Maximizing Non-monotone Submodular Functions. In: Du, DZ., Wang, J. (eds) Complexity and Approximation. Lecture Notes in Computer Science(), vol 12000. Springer, Cham. https://doi.org/10.1007/978-3-030-41672-0_10
Download citation
- .RIS
- .ENW
- .BIB
-
DOI : https://doi.org/10.1007/978-3-030-41672-0_10
-
Published:
-
Publisher Name: Springer, Cham
-
Print ISBN: 978-3-030-41671-3
-
Online ISBN: 978-3-030-41672-0
-
eBook Packages: Computer Science Computer Science (R0)
Source: https://link.springer.com/chapter/10.1007/978-3-030-41672-0_10
0 Response to "Guaranteed Nonconvex Optimization Submodular Maximization Over Continuous Domains"
Postar um comentário